CHARACTERISTICS OF SOIL UNDER CEDRUS DEODARA: AN INTERACTION OF LITTER, HUMUS AND MINERAL SOIL TOWARDS IMPROVEMENT OF SITE-QUALITY.

by

M. N. Malik, M. Jamil-ur-Rehman and M. Hafiz,
Pakistan Forest Institute, Peshawar

Nutrient status of representative soil profile, mineral composition of humus and semidecomposed litter, and levels of mineral elements in the needles of different age crop of Cedrus deodara were determined. The findings are tabulated and discussed. The role of organic matter in the enrichment of soil-site and towards maintenance of nutrient balance is elaborated.

Organic matter in forest soils contributes towards the improvement of site quality. It originates from the disintegrating forest floor debris, comprising leaf fall from main tree species, and decomposing herbaceous and grass vegetation. On decomposition the debris releases a complex mixture of various organic compounds and mineral nutrients. The presence of humus and its interaction with soils mineral constituent distinguishes it both in pedological and ecological characteristics, from other soils. In essence, it is the natural source of maintenance of nutrient level and performs many-fold functions in the overall soil-plant relationships. The humid temperate conditions in some deodar forests usually encourage decomposition of organic matter and release of watersoluble nutrients and various organic colloids.

Deodar is an important timber species of West Pakistan. Its ecological distribution has been studied in the past (3, 4). It occupies soil sites which differ in many edaphic characteristics, including the composition of humus, covering the forest floor or intermixed with the top mineral soil. The rate and extent of trans-migration of humic substances develop characteristic soil profiles. Soil, under certain climatic conditions and vegetative cover, develops profiles particular to that site, while the growth of forest trees is related to the nutrient reserves of various horizons and the physical make-up of the soil. The objective of this study is to ascertain the inter-mixing of vegetation debris with the mineral soil and its influence on the soil fertility potential and, thus, to find out some means of qualitative assessment of site-quality.

MATERIAL AND METHODS.

A particular site was selected on a moderate slope in Compartment 23 of Shaiz forest in Dir Forest Division, and a representative soil profile was exposed down to its parent material. Besides studying varying physical, pedological and apparent genetical
characteristics of soil profile, soil samples were collected from different layers down
to a depth of 60'. Representative samples, of surface litter and partly decomposed
humus were also obtained from the different areas.

Needles of current year growth were also collected from whorls of lateral shoots
of seedlings of ages varying from 3 to 22 years. The approximate age of seedlings was
accounted for by counting of inter-nodes.

The soil samples were prepared and sieved through 60-mesh sieve for chemical
analysis in the laboratory. pH was determined electrometrically in a 1: 2.5 soil-H₂O
suspension. The total elemental composition was determined following methods out-
lined by Jackson (7). Total Fe₂O₃ was determined by 1, 10-phenanthroline method (2).

The humus and litter samples were ashed at 450°C in a muffle furnace, followed
by treatment with HF and HClO₄ and bringing it in solution in HCl. Samples for
analytical work were prepared by dissolving the needle ash in 5 ml. of 6N HCl. The
cationic composition was determined following methods given by Jackson (7), and Na
and K were determined by Beckman Model B Flame Spectrophotometer.

REVIEW OF LITERATURE.

'Site-quality concept has been quite baffling on account of several variables in-
volved in causing the cumulative effect. Heiberg and White (5) expressed that site
represented the sum of many effective conditions, under which the plant or plant
community lives. Amongst soil factors, the variables such as available moisture,
thickness of solum, depth of A horizon, sub-soil level of nutrients and pH have been
considered in quantitative expressions in one form or the other (1). No single soil
variable has yet been found which could be used in the rating of site-quality.

Conifers are not exacting in their nutrient requirements, and they require rela-
tively lesser nutrient level (1, 13, 14). Deodar (*Cedrus deodara*) is no exception to this
general rule. It can adapt to soil conditions varying considerably in parent soil-
characteristics (4). The composition and constitution of organic matter influences
site quality (11). Manil et al (9) found that in phyto-sociological mapping studies,
humus formed as a result of composition and constitution of ground flora causes slight
differences even between sites classed, otherwise as homologus. Koroleff (8) has de-
scribed the ill-effect produced by leaf litter. Although it favourably modifies micro-
climatic influence the surface matting caused by undecomposed litter causes hindere-
ce to the seed in reaching the floor resulting, consequently, in failure of germina-
tion of seed. Furthermore, such conditions also result in mechanical and physiological
injuries to the young germinating seeds which might succeed in reaching the top soil
(9, 15).

Mineral composition of humus and foliar analysis have been used for site quality
rating. Watt and Heinselman (13) have significantly correlated foliar N and P with
site quality, for example in case of *P. mariana*; K was found to be inversely proportional to better site quality. It has been inferred that rapid litter decomposition, free movement of enriched water and nearness of mineral sub-soil contribute to higher percentage of N and P in soil, thereby improving its potential fertility in favour of better establishment of young seedlings. For diagnostic purposes of various soil-plant relations, P content in foliage-litter has been found quite useful, but N content did not prove of much value in practice (13); the former nutrient element reflected growth quality and P status of soil accurately at each individual site. Wall (12) found a decreasing site index with decreasing N and P content of needles. He also found these elements to be very low in soil on poor sites. Plant species, in general, prefer edaphically similar sites irrespective of geographical location. Hohne (6) has found, from a study where N and mineral content of forest ground flora have been related to site, that certain species are selective in their requirements for mineral elements. Close relations between the nutrient content of plant and soil are well known (15, 14). Viro (11), in his studies on evaluation of site fertility concludes that of the two methods of site evaluation, soil analysis and foliar analysis, the former is standard; it is to be supplemented perhaps in exceptional cases with the latter. Seth and Bhatnagar (10) have conducted site studies on *Shorea robusta* and found concentration of N, P, K and Mg, in foliage, rising progressively from site-quality I to IV; they also found direct relation of soil's Ca to foliage Ca.

RESULTS AND DISCUSSIONS.

The accumulation of organic matter on the forest floor is quite high. Part of this decomposes and gets mixed with the mineral soil, whereas a considerable proportion remains on the surface in an undecomposed or semi-decomposed condition for longer periods. This phenomena usually depends upon the composition of vegetation and climatic and physiographic factors and, thereby, influences the site-quality through pronounced effects on soil-plant relationships.

The morphological characteristics of soil-profile under study rate it as a site, favouring relatively faster conversion of organic litter to humus. It also suggests free movement and mixing of nutrients in soil thereby improving its nutrient potential. The soil is relatively of fine texture, particularly in the upper horizons and, therefore excessive removal of colloids by leaching is impeded. The organic matter incorporated in the first 12" layer of soil is 1.6 percent to 0.5 percent, which rapidly decreases from B to C horizons. Consequently, the nitrogen of soil is low, ranging from 0.16 percent to 0.13 percent in the upper horizons, decreasing rapidly from 0.05 to 0.03 percent in the rest of the profile. Normally, forest soils are rich in nitrogen, and a 0.2 percent of nitrogen content is considered to be quite adequate for the growth of most tree species (15).

The soil is very deep permitting root penetration down to 76" depth. The soil possesses high cation exchange capacity. The pH of soil varies from 5.8 to 6.5, suggesting favourable environments for the growth of coniferous vegetation.
The data of chemical analysis of soil profile are given in Table 1. The average potash content of soil is 3.0 percent, with a range of 2.35 to 3.18 percent. The K2O content decreases with increasing depth of profile. The lime content of soil varies considerably throughout the profile. The average CaO content of the soil is 2.07 percent, and it varies from 0.98 percent to 5.32 percent. The MgO content of soil varies from 1.13 to 2.17 percent with an average of 1.87 percent.

The oxides of iron and aluminium are somewhat low in top layer, but increase in B and C horizons. The percentage of Fe2O3 varies from 5.96 to 7.95 and that of Al2O3 from 21.15 to 16.62. Removal of Fe2O3 from A to B horizon is gradual and remarkable. The P2O5 increases in the lower horizons of the profile.

The exchangeable nutrients and available P2O5 of soil are given in Table 2. The analysis presents water-soluble plus ammonium acetate extractable metallic cations. The K2O content of the top 6" soil is 0.047 percent which gradually decreases in the lower horizons to 0.019 percent. The average K2O is 0.02 percent, which is considered sufficient for the normal tree growth (14). The available CaO and MgO contents are also high to meet the requirements of conifers; these range from 0.57 percent to 0.28 percent and from 0.07 percent to 0.13 percent, respectively. The P2O5 content of soil varies considerably. The maximum accumulation has been found in the middle of soil profile, a zone which is also considered to be the zone of maximum root development. The overall P2O5 content, necessary to promote normal tree growth, is quite high. A 0.005 percent P2O5 in easily available form, is considered sufficient for the normal tree growth (14).

The results of chemical analysis of undecomposed litter, partially decomposed litter and humus samples are presented in Table 3. The ranges of K2O and CaO content of litter are 0.23 to 0.28 percent and 2.52 to 2.80 percent, respectively. Similarly, humus and partially decomposed litter also contained considerable amount of nutrients which ultimately return to the soil. The difference in composition of these materials is due to the removal of some watersoluble nutrients and gradual liberation of various organic compounds on decomposition by soil micro and macro-organisms.

NUTRIENT COMPOSITION OF DEODAR NEEDLES.

The data of analysis of needle samples are presented in Table 4. The nutrient requirements of young deodar seedlings are low (5). The seedlings can therefore maintain desired growth rate provided other site variables, such as various edaphic and physiographic factors are favourable. The tree crop in general, extracts nutrients from deeper layers of soil strata, and helps in improving fertility of site subsequently returning the nutrients to soil's upper layers through seasonal needlefall (9).

From the needles' composition of different age seedlings, given in Table 4, it was found that none of the nutrient elements exhibited correlation with the age of seedlings. The amounts of K2O CaO MgO, however, appeared increasing with the age of plant.
CONCLUSION.

1. Soil profile, particularly its upper layers, are quite rich in nutrients sufficient for meeting the needs of germinating tree crop.

2. Soil is continuously enriched through liberation of elements and organic colloids from the decomposing litter.

3. Mixing of decomposed organic matter with the soil is responsible also for better configuration of soil particles leading to better drainage and creation of suitable conditions for the proper development of plant roots in the middle of the profile.

Deodar seedlings are, in general, low demander of nutrients. This species can, therefore, establish itself on different types of soil. For assessment of site-quality edaphic factor must be taken into account together with climatic, biotic and other physiographic factors.

REFERENCES

Jour. of Forestry 52: 178.

9. Manil, G., et al. 1964 Humus as a site factor in the acidiphilour
Beech Forests of Belgium F. A. 25:4566.
1958.

10. Seth, S. K. and Bhatnagar, 1960 Inter-relations between mineral consis-
H. P. tuents of foliage, soil properties, site-

12. Wall, R. F. 1955 Site requirements of Lake states trees.
Ext. from Rep. Lake States Forestry
Exp. Sta. 1963-64.

M. L. site-quality in a northern Minnesota
spruce bog.

1958 to silviculture. The Ronald Press Co.,
NewYork.

15. Zahner, R. 1958 Site-quality relationships of Pine Forests
1958 in Southern Arkansas and Northern
Louisonia. Forest Science 4: 162.
<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Total Mineral Status of a Representative Soil Profile under Deciduous in Dir Forests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>90'0</td>
<td></td>
</tr>
<tr>
<td>80'0</td>
<td></td>
</tr>
<tr>
<td>70'0</td>
<td></td>
</tr>
<tr>
<td>60'0</td>
<td></td>
</tr>
<tr>
<td>50'0</td>
<td></td>
</tr>
<tr>
<td>40'0</td>
<td></td>
</tr>
<tr>
<td>30'0</td>
<td></td>
</tr>
<tr>
<td>20'0</td>
<td></td>
</tr>
<tr>
<td>10'0</td>
<td></td>
</tr>
</tbody>
</table>

The Pakistani Journal of Forestry

January, 1971
<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Exchangeable Cations</th>
<th>Mg0</th>
<th>Ca0</th>
<th>K+0</th>
<th>Na+0</th>
<th>pH</th>
<th>3-Extracable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Profile</td>
<td>N</td>
<td>P</td>
<td>K</td>
<td>Ca</td>
<td>Mg</td>
<td>Fe</td>
<td>pH</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>0.0 - 0.10</td>
<td>0.25</td>
<td>0.05</td>
<td>0.10</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>7.0</td>
</tr>
<tr>
<td>0.10 - 0.20</td>
<td>0.30</td>
<td>0.07</td>
<td>0.12</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>7.2</td>
</tr>
<tr>
<td>0.20 - 0.40</td>
<td>0.35</td>
<td>0.08</td>
<td>0.14</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>7.3</td>
</tr>
<tr>
<td>0.40 - 0.60</td>
<td>0.40</td>
<td>0.09</td>
<td>0.16</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Note: Table 3. Mineral Nutrient Composition of Organic Litter and Humus.

Source: The Pakistan Journal of Forestry
<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Height (inches)</th>
<th>A1pH</th>
<th>N</th>
<th>AsH</th>
<th>Fe.6%</th>
<th>P.05%</th>
<th>MnO</th>
<th>CaO</th>
<th>K 2O</th>
<th>Na 2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.120</td>
<td>1.110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.776</td>
<td>0.760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.723</td>
<td>0.713</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>0.690</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.344</td>
<td>0.334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.064</td>
<td>0.054</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.044</td>
<td>0.034</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.4

Minor Composition of Needles of Deodar Seedlings

Percentage of Total

The Pakistan Journal of Forestry
January, 1973